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Abstract

Precision is deemed the most important aspect of a measurement for process control.  This paper discusses
the role of accuracy in process control and product quality.  Although the discussion is emphasized for CD
SEM metrology systems, the idea can be extended to other metrology areas such as thickness measurement
where in addition to thickness, material characteristics also play a role.

In 1999, the characteristics of accuracy were published in a landmark paper1.  The authors introduced the
concept of characteristic slope and offset for the purpose of tool evaluation.  Slope and offset were obtained
from correlation plots of a measurement tool under test with a reference measurement system.  The
measurands were features that represent the range of process variations in a line.

This paper builds on the ideas put forth in that reference1 and discusses the impact of measurement
accuracy on process control.  First, the issue is considered in an abstract sense, by comparison of the
measurement method under test to a standard reference method.  Then practical implications are discussed
in more detail when tools from different suppliers are used in a fab to manufacture products.
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1. Introduction

CD SEM metrology systems are the tools of choice for process monitoring and control in submicron
semiconductor fabrication facilities.  They are the most precise tools available for measuring submicron
features.  However, the accuracy of measurements for CD SEM metrology is not well defined.  This is due
to the fact that physical models that describe the signal do not exist.

2. Accuracy

From Mandel 2 “We have seen that accuracy implies a comparison with a reference value.  If we consider a
range of values, rather than an isolated point, the determination of accuracy would require the availability
of a reference value at each point in the range.  In the absence of reference values, the problem of accuracy
cannot be discussed.  But even if a reference value were available at each point, the problem of accuracy
would be trivial: by plotting the measured values versus the reference value, a calibration curve would be
obtained.”

The implication of the above statement is that the calibration curve solves the problem of accuracy. When
applied to CD measurements, the calibration curve can be constructed either from features with different
target widths or from features that are all based on the same target width but span the range of process
variations.  Consider the following example.  Fig. 1 depicts the comparison of CD measurements of
features on a chrome-on-glass photomask measured on two different systems.  The mask was wet etched,
and the features measured were dense lines with nominal widths of 0.35, 0.5, 0.7, 1.0, and 1.5 microns. The
CD range in this experiment corresponds to the range of drawn feature sizes on the mask.  As a result of the
method of manufacture and proximity of the test features, all edges on all features, with the same
orientation, are expected to have the same profile.  In the present experiment the edges were undercut as a
result of the wet etch.  The reference measurement system was an optical linewidth metrology tool with a



547

calibration traceable to NIST standards for lines greater than 0.5 micron.  The tool under test was a
scanning probe microscope (StylusNanoProfilometer, SNP).

y = 1.0001x + 40.5
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Figure 1  – Accuracy of Scanning Probe Microscope (Data courtesy of Infineon Technologies and Surface/Interface)

Fig. 1 shows that SNP measurements are linear with an offset of 40 nm.  The last point is excluded from the
analysis due to limitations of the optical tool for small linewidth measurements.  The offset is mainly due to
the fact that the mask was wet etched, resulting in a re-entrant profile.  The CD measurements of SNP were
calculated at 50% chrome height while the optical metrology tool is measuring very close to the top of the
line due to opacity of the chrome.  This difference is constant for all feature sizes in the range of interest,
validating the assumption of edge similarity across the drawn CD range, and the slope of regression is
unity.  It must be mentioned that the scale calibration in neither system was adjusted prior to measurement.
That is, the measurements were taken with whatever scale calibration was in place on each tool at the time
of measurement.  The closeness of regression slope of 1.0 indicates that the scales were well matched.

The above graph shows one aspect of accuracy, the calibration curve that is constructed with standards of
different drawn width.  The concept here is similar to a linearity test, which is one measure of accuracy.
Though the conclusion here is much stronger than linearity alone.  Due to traceable measurements from one
tool and the slope of unity in the regression, the measurements of the tool under test (SNP) are made
accurate by incorporating a simple offset.

The analysis discussed here conforms to the method discussed by Mandel 

2.  However necessary, this
method of using test structures of different drawn widths is for assessing accuracy, it is not sufficient for
process control.  For process control, the variations in the process must also be characterized.  Thus it is
required to construct the calibration curve based on a set of features that span the range of process
variations around a targeted dimension.

Let us consider a hypothetical case for comparison of a tool under test with a reference measurement
system for two situations.  First at different drawn widths, and second for process variations at each drawn
width.  The factor that influences process control is not the calibration curve that is obtained with reference
standards of different drawn width.  Rather, it is the curve that is obtained by comparing process variations
around the targeted dimension of interest.  Each instrument may respond differently to the process
variations.  A graph similar to Fig. 1, but incorporating the response to process variations at each targeted
dimension is shown in Fig. 2 below.
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Figure 2  –Relationship of CD measurements between two tools depends on the feature set being measured.

This example illustrates the hypothetical case of comparison of two measurement methods where the
response to the set of reference standards (the part represented with dotted line obtained from regression to
a range of different sized standards) is different from the response to the process variations (the solid lines
centered around each targeted dimension).  What matters for process control is the “local” characterization
of the response of the measurement tool (and method) to the process variations at a point near the center of
a process.

It will be shown that this hypothetical case is experimentally observed in the measurements of CD SEM
systems.  However, the underlying reason for this behavior is not limited to CD SEM measurements.  The
reason for such behavior is that CD measurements, by necessity, condense a two dimensional
representation (line profile or image) of a three dimensional feature, into a one dimensional result (CD
number).  The measurement can vary in response to two degrees of freedom.  For example, the
measurement of the line, there is width (x direction) and sidewall slope.  Only one degree is captured by
drawn variations of the dimensional standards, assuming that all corresponding sidewalls have the same
shape.  In the space of allowable process window, the dimensional variations of a feature are not solely
along the x direction.  Variations in feature dimension that result from the device manufacturing process are
often manifest as changes in both the CD and the sidewall (e.g. stepper / scanner focus and exposure
variations).

In the case of top-down CD SEM systems the issue is further compounded by the fact that physical models
for the signal are not available.  Thus, ad hoc algorithms are used for edge pixel assignment.  This results in
an unpredictable response to process variations than what would be indicated by an accurate Reference
Measurement System (RMS).  To investigate this effect, reference measurement systems are used that are
able to reproduce, with reasonable accuracy, the two dimensional line shapes.  Such reference measurement
systems include cross sectional SEM or scanning probe microscopes.

Last year in this conference, Banke and Archie1 presented their landmark contributions in a paper titled
“Characteristics of accuracy for CD metrology” and their main perspective was tool evaluation.  Their
method of characterization starts by building a set of wafer artifacts that represent subtle, but important,
process variations.  The authors emphasize that quality of this step determines the usefulness of the tool
evaluation.  Their wafers were 0.25 micron focus/exposure matrices.  The resist patterns consisted of
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isolated and dense lines and isolated spaces.   Next the authors measured the artifacts in a reference
measurement system (RMS) and with several CD SEM tools under evaluation and compared the
measurement results.   As an example, to demonstrate the work of Banke and Archie, CD SEM to cross
section correlation data obtained from SEMATECH was used (Fig. 3).
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Figure 3  – Experimental results of CD SEM to Cross section correlation. (Data courtesy of Arnie Ford, SEMATECH)

The samples in the above graph were long, 0.25 micron dense lines suitable for cleaving.  The lines were
drawn with equal line and space on the mask.  The features were resist on a 200 mm silicon substrate.  The
features were measured on the CD SEM, then cleaved and cross-sectioned.  Both linewidth and pitch were
measured on each system.  The measurements of structure pitch are used for calibration of magnification in
the cross section tool, so the pitch measurements were identical.  But the linewidth measurements behaved
differently.  The parameters of interest are slope and offset of the linear regression.  It can be seen from
Fig. 3 that the slope of measurement is not unity.

We mention in passing that the relationship between the measurements of the two tools in Fig. 3 is different
than their relationship when measuring different drawn widths.  Suffice it to say that all modern CD SEM
systems pass the linearity tests with ease.  One can presume that the slope of regression obtained with
different drawn widths would be very close to unity.

In their study, Banke and Archie measured the wafers on six CD SEM models from various manufacturers.
However, they used Mandel’s regression analysis method for correlating CD SEM measurements to RMS
results.  Mandel’s regression method provides the ability to account for the error in both RMS and CD
SEM tools as part of the calibration process. The authors emphasize that errors in the RMS and CD SEM
measurements limit the accuracy assessment.  The results can be summarized in the form of a linear
relationship:

y = sx + b

Where y denotes CD SEM Measurements, x denotes the RMS measurements, s is the slope of the linear
regression, and b is the offset.  Note that this definition of slope is the reciprocal of the definition of the
slope in the original reference1.  Among the results obtained by Banke and Archie were estimates of slope
for each CD SEM relative to the RMS. The results for the slopes of 6 CD SEM systems A through E are
depicted below:
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Figure 4  – Slope of CD SEM Measurements
 [Modified from the original reference with permission of B. Banke and C. Archie]

It is interesting to note that all six CD SEM systems have slopes less than unity for isolated lines.  This
means that for a 10 nm change in the linewidth as judged from the cross sections, the commercial CD SEM
systems report a smaller change, 8 nm on average.  The slopes shown in Fig. 4 define the sensitivity of the
CD SEM measurement relative to the RMS.  The sensitivity signifies the amount by which the CD SEM
measurements change for every unit change in the cross section measurements.
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Figure 5  – Appearance of process variations based on measurement tool sensitivity

The sensitivity of measurement has a direct impact on the observed process variations.  In practice most
CD SEM systems have sensitivity less than unity.  If sensitivity is ignored, the consequences are much
more dramatic than lack of measurement precision.  Consider the following example, the significance of
which becomes clear when considering two different CD SEM systems in different fabs.  Assume that a
process is in place that is measured with an accurate tool (such as cross section or scanning probe
microscope) and the process is actually within specification limits (as shown in the upper left corner of
Fig. 6).  Now assume that a CD SEM is placed in the manufacturing line and the proper measurement offset
is set up to center the process, but the slope (sensitivity) is ignored, a common practice in manufacturing.
With low sensitivity of CD SEM measurements, the process distribution will appear tighter than the
specification limits.  It is likely, in this scenario that the process will be allowed to drift and will be
controlled via the CD SEM measurements.  A possible outcome is shown in the upper right corner of
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Fig. 6, where the product, if measured with the accurate tool, will actually follow a wider distribution than
is reported by the CD SEM.  The economic consequences of ignoring accuracy can be quite significant.
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Figure 6  – The consequences of uncorrected low sensitivity.  The product will have a wider distribution than reported

The effect of sensitivity can be corrected.  Most CD SEM systems provide the capability to modify the
results with a slope and offset correction prior to reporting the measurement.  If this method is not
employed, the effects can still be taken into account post measurement.  Following the discussions by
Mandel 2, and Banke and Archie  1 where the “corrected precision” of measurement is defined as:

σ m, corrected = σ m, uncorrected /s

one can define the “corrected process standard deviation” (since the sensitivity can be thought of as
magnifying the variations) as:

σp, corrected = σ p, uncorrected /s

One can also define corrected “observed” process variations, corrected Cp.  Since σo
2 = σp

2 + σm
2, we get

σo, corrected = σ o, uncorrected /s

Cp, corrected = Cp, uncorrected /s

The metric Cpk changes differently and is not described by a simple multiplication factor.

Cpk, corrected = (Min[(USL – µcorrected , µ corrected  - LSL)])  /  3σo, corrected

It should be emphasized that the simple offset correction does not change Cp, the potential process control
capability index.  This is the reason why accuracy, when interpreted solely as an offset, is often ignored in
process control.  But measurement sensitivity does affect the process control capability.
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3. Practical Considerations for Matching

Typically, matching is evaluated by comparing measurement means of multiple tools.  For reasons
described in previous section, this can lead to erroneous conclusions about product quality.

We will borrow from and build on Mandel’s analysis when comparing two measurement systems.  For two
measurement systems to be compared according to the above method, each needs to be compared to a
reference measurement system, and this requires the knowledge of two characterization curves.  But a
comparison of the two measurement systems can be achieved directly without a reference measurement
system.  The comparison will provide a relative sensitivity of the two measurement systems.

To investigate the impact of matching on process control among multiple tools, one does not require
traceable standards nor a reference measurement system.  Using concepts defined in this paper, the
measurement systems can be compared to each other in pairs.  The advantage of applying this concept to
CD SEM systems is that with their excellent measurement precision, Mandel’s regression can be performed
with very reliable estimates of the relative sensitivity.

Consider the experimental results of comparison of two commercial CD SEM systems from different
suppliers.  Engelen and Minnaert-Janssen3 have described a method for matching CD SEM systems from
different manufacturers for the purpose of evaluating focus/exposure analysis in exposure tool
characterization.  As part of the matching activity, the authors ensure that magnification calibration
between the systems agree to better than 1% by measuring pitch of an artifact.  After certain other steps, at
the very end of the matching process, the authors compute an offset between average of measurements of
the two systems.  They obtain matching by applying this offset to the results of one of the system.

Matching by considering an offset alone will not be sufficient for process control in manufacturing.  In
Fig. 7, we show the scatter diagram of the focus/exposure matrix measurements on two commercially
available CD SEM tools.  The data is courtesy of Andre Engelen.  The nominal feature size was 0.3 micron
and the focus range was 1.0 micron.  For reference, the straight line depicts the results of common practice
of applying a simple offset to get the tools matched.  It is clearly seen that the behavior of the two tools
deviates from straight line with unity slope.
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Figure 7  – Comparative characterization of two SEM models.  The slope with Mandel’s model is 0.926.  For
comparison, the line with unity slope and offset correction is also shown. (Data courtesy of Andre Engelen, ASML)
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To the data we apply the regression method provided by Banke and Archie1.  However, the method is used
to characterize the response of one tool relative to the other.  In this case, the slope calculated with
Mandel’s method was 0.926 assuming equal measurement precision for the two tools.  The standard linear
regression method yields a slope of 0.924.

The discussion in the previous section regarding comparison of the metrology tool under test to a reference
measurement system can be extended to the comparison of two metrology tools with each other.  The
process variations can be measured with each tool and the correlation plotted in a fashion similar to Fig. 7.
The slope of the regression defines relative measurement sensitivity of one tool to the other.  The deviation
of the relative sensitivity from unity will cause the process variations to appear different when measured
with each tool.  The conclusions regarding the difference in process control capability when utilizing one
tool versus the other remain valid.

Indeed, as can be seen from Fig. 4, existing data indicates that relative sensitivities from tool to tool can
vary by more than 20% (for 0.25 micron nominal line).  Whenever more than one equipment model is used
in fabrication facilities (either in the same facility or different facilities around the world) care must be paid
to the relative sensitivity of the different tools to process variations.  If the deviation of relative sensitivity
from unity goes unnoticed, the product quality for that layer will depend on the tool that is used for
measurement.  The uncorrected Cp can vary by more than 20%.  In the example of Fig. 7, the deviation
from unity is 7%.  By comparison, a degradation of precision from gage maker rule by a factor of 3 will
only degrade Cp by 5%.

4. Conclusions

Accuracy, if ignored, will have a significant impact on the manufacturer’s ability to control the process.  By
considering the sensitivity of the measurement system’s response to process variations, we have shown that
there exists a linear relationship between measurement sensitivity, s, and the apparent potential process
control capability index Cp.  This compares to measurement precision which impacts Cp based on a root-
mean-square relationship with process standard deviation.  Thus accuracy can have a much larger effect for
an equivalent deviation.

A method to minimize the impact of inaccuracy on process control has also been described.  This method
relies on a reference measurement system1, used to provide the best possible characterization of the
artifacts.  Such a characterization should be performed by using sample artifacts that reflect the range of
acceptable process variations (e.g. for lithography this would require a focus and exposure matrix). The
RMS must be known to be, from basic physics, more accurate and more precise than tools used in the
manufacturing line.  However, such a system need only be significantly better than the in-line system to be
of value.  The RMS should be used to pick out the aspect of the feature on which the final product
performance depends.

An extension of the accuracy argument has been made to the case of system-to-system matching of
different equipment models.  Here again, it has been demonstrated that the impact of the existing relative
sensitivity (relative for the case of matching) of a CD measurement system on the process control
capability is more significant than the precision. Traceable linewidth standards are not required for such a
determination since relative measurement matching is being characterized.
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Appendix 1: Statistics after Linear Transformation

For a measurement of a quality x, we define mean µx and standard deviation σx of the quality as follows:

µx = E(x)
σx

2 = E ( (x- µx)2)

The notation E(x) represents the expectation value of x.  These quantities refer to the population parameters
for the hypothetical set, not the estimates.

Given a linear transformation:
y = sx + b

We have in a similar fashion:
µy = E(y)

σy
2 = E ( (y- µy)2)

It can be shown that:
µy = sµx +b

σy = sσx

In particular, if x has a normal probability distribution given by N(µx, σx), then probability distribution of y
is also normal and is given by N(µy, σy).  In this notation, N(µ, σ) is the normal probability distribution
described by a Gaussian as:
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Appendix 2: Process Control Capability Ratios

There are two metrics that describe the capabilities for statistical control of process variability.  Both
metrics compare the process variability to the specification limits. The quality characteristic is assumed to
have a normal distribution with mean µ and standard deviation σ. A measure of process variation is the
6σ spread in the distribution of the measured characteristic.  The potential process control capability Cp is
defined by:

Cp = (USL – LSL) / 6σ

Note that σ represents the estimate of process variation standard deviation (σp) and in practice is
confounded by measurement imprecision (σm).

σ 
2 = σp

2 + σm
2

The index Cp defines the maximum capability and is independent of the actual mean µ.  In practice the
mean µ may be closer to one of the two limits.  Then the one-sided process capability ratio is defined
relative to the limit near the process average to reflect the actual process control capability.

Cpk = (Min[(USL – µ , µ - LSL)])  /  3σ


